skip to main content


Search for: All records

Creators/Authors contains: "Wege, Mia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Leroy, Boris (Ed.)
  2. Abstract. Systematic long-term studies on ecosystem dynamics are largely lacking from the East Antarctic Southern Ocean, although it is well recognized that they are indispensable to identify the ecological impacts and risks of environmental change. Here, we present a framework for establishing a long-term cross-disciplinary study on decadal timescales. We argue that the eastern Weddell Sea and the adjacent sea to the east, off Dronning Maud Land, is a particularly well suited area for such a study, since it is based on findings from previous expeditions to this region. Moreover, since climate and environmental change have so far been comparatively muted in this area, as in the eastern Antarctic in general, a systematic long-term study of its environmental and ecological state can provide a baseline of the current situation, which will be important for an assessment of future changes from their very onset, with consistent and comparable time series data underpinning and testing models and their projections. By establishing an Integrated East Antarctic Marine Research (IEAMaR) observatory, long-term changes in ocean dynamics, geochemistry, biodiversity, and ecosystem functions and services will be systematically explored and mapped through regular autonomous and ship-based synoptic surveys. An associated long-term ecological research (LTER) programme, including experimental and modelling work, will allow for studying climate-driven ecosystem changes and interactions with impacts arising from other anthropogenic activities. This integrative approach will provide a level of long-term data availability and ecosystem understanding that are imperative to determine, understand, and project the consequences of climate change and support a sound science-informed management of future conservation efforts in the Southern Ocean. 
    more » « less
  3. Abstract

    The impacts of climate change in Antarctica and the Southern Ocean are not uniform and ice‐obligate species with dissimilar life‐history characteristics will likely respond differently to their changing ecosystems. We use a unique data set of WeddellLeptonychotes weddelliiand crabeater seals' (CESs)Lobodon carcinophagabreeding season distribution in the Weddell Sea, determined from satellite imagery. We contrast the theoretical climate impacts on both ice‐obligate predators who differ in life‐history characteristics: CESs are highly specialized Antarctic krillEuphausia superbapredators and breed in the seasonal pack ice; Weddell seals (WESs) are generalist predators and breed on comparatively stable fast ice. We used presence–absence data and a suite of remotely sensed environmental variables to build habitat models. Each of the environmental predictors is multiplied by a ‘climate change score’ based on known responses to climate change to create a ‘change importance product’. Results show CESs are more sensitive to climate change than WESs. Crabeater seals prefer to breed close to krill, and the compounding effects of changing sea ice concentrations and sea surface temperatures, the proximity to krill and abundance of stable breeding ice, can influence their post‐breeding foraging success and ultimately their future breeding success. But in contrast to the Ross Sea, here WESs prefer to breed closer to larger colonies of emperor penguins (Aptenodytes forsteri). This suggests that the Weddell Sea may currently be prey‐abundant, allowing the only two air‐breathing Antarctic silverfish predators (Pleuragramma antarctica) (WESs and emperor penguins) to breed closer to each other. This is the first basin‐scale, region‐specific comparison of breeding season habitat in these two key Antarctic predators based on real‐world data to compare climate change responses. This work shows that broad‐brush, basin‐scale approaches to understanding species‐specific responses to climate change are not always appropriate, and regional models are needed—especially when designing marine protected areas.

     
    more » « less